Optimal Error Estimates of the Semidiscrete Central Discontinuous Galerkin Methods for Linear Hyperbolic Equations
نویسندگان
چکیده
We analyze the central discontinuous Galerkin (DG) method for time-dependent linear conservation laws. In one dimension, optimal a priori L error estimates of order k+1 are obtained for the semidiscrete scheme when piecewise polynomials of degree at most k (k ≥ 0) are used on overlapping uniform meshes. We then extend the analysis to multidimensions on uniform Cartesian meshes when piecewise tensor product polynomials are used on overlapping meshes. Numerical experiments are given to demonstrate the theoretical results.
منابع مشابه
L Stability Analysis of the Central Discontinuous Galerkin Method and a Comparison between the Central and Regular Discontinuous Galerkin Methods
In this paper we give stability analysis and error estimates for the recently introduced central discontinuous Galerkin method when applied to linear hyperbolic equations. A comparison between the central discontinuous Galerkin method and the regular discontinuous Galerkin method in this context is also made. Numerical experiments are provided to validate the quantitative conclusions from the a...
متن کاملDiscrete maximal parabolic regularity for Galerkin finite element methods
The main goal of the paper is to establish time semidiscrete and space-time fully discrete maximal parabolic regularity for the time discontinuous Galerkin solution of linear parabolic equations. Such estimates have many applications. They are essential, for example, in establishing optimal a priori error estimates in nonHilbertian norms without unnatural coupling of spatial mesh sizes with tim...
متن کاملOptimal Error Estimates of the Semidiscrete Local Discontinuous Galerkin Methods for High Order Wave Equations
In this paper, we introduce a general approach for proving optimal L2 error estimates for the semi-discrete local discontinuous Galerkin (LDG) methods solving linear high order wave equations. The optimal order of error estimates hold not only for the solution itself but also for the auxiliary variables in the LDG method approximating the various order derivatives of the solution. Several examp...
متن کاملOptimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملL2 Stability Analysis of the Central Discontinuous Galerkin Method and a Comparison between the Central and Regular Discontinuous Galerkin Methods
We prove stability and derive error estimates for the recently introduced central discontinuous Galerkin method, in the context of linear hyperbolic equations with possibly discontinuous solutions. A comparison between the central discontinuous Galerkin method and the regular discontinuous Galerkin method in this context is also made. Numerical experiments are provided to validate the quantitat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 56 شماره
صفحات -
تاریخ انتشار 2018